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Abstract

A probability function is non-conglomerable just in case there is
some proposition E and partition π of the space of possible outcomes
such that the probability of E conditional on any member of π is
bounded by two values yet the unconditional probability of E is not
bounded by those values. The paradox of non-conglomerability is
the counterintuitive—and controversial—claim that a rational agent’s
subjective probability function can be non-conglomerable. In this pa-
per, I present a qualitative analogue of the paradox. I show that, un-
der antecedently plausible assumptions, an analogue of the paradox
arises for rational comparative confidence. As I show, the qualitative
paradox raises its own distinctive set of philosophical issues.

1 Introduction

Arntzenius et al. (2004) introduce the intuitively odd feature of certain prob-
ability functions known as ‘non-conglomerability’ as follows:

Suppose that conditional on its being cold tomorrow, you are
confident that it will be sunny. Suppose further that conditional
on its not being cold tomorrow, you are also confident that it will
be sunny. It would be odd indeed if you in addition were confident
that it was not going to be sunny tomorrow. The odd feature your
probability function has in this case is non-conglomerability. (p.
274; emphasis in original)

∗Penultimate version. Final version published at Synthese, 2018, 195(3), pp. 1181-1210.
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More generally, a probability function P is non-conglomerable just in case
there is some proposition E and partition π of the space of possible outcomes
such that the probability of E conditional on any member of π is bounded
by two values yet the unconditional probability of E is not bounded by those
values.1 In the above example:

• E = Sunny,

• π = {Cold, Not Cold},

• 0.5 < P (E|Cold) < 1,

• 0.5 < P (E|Not Cold) < 1, yet

• P (E) < 0.5.

Non-conglomerable probability functions are not just odd. Intuitively,
it seems irrational for you to have a subjective probability function that is
non-conglomerable. In the above example, either it will be cold tomorrow,
or it will not. Further, given either disjunct, you are confident that it will be
sunny. Thus, a simple application of the the deductive inference rule of “proof
by cases” seems to entail that, unconditionally, you should be confident that
it will be sunny. Yet you are confident that it will not be so. Hence, you
seem to be in violation of deductive logic—as reputable a norm of rationality
as any.2

Despite the intuitive oddness of non-conglomerable probability functions,
it is uncontroversial that the axioms of probability theory permit their exis-
tence.3 What is controversial is whether a rational agent’s subjective prob-
ability function can ever be non-conglomerable. The claim that it can is the
paradox of non-conglomerability.4 Some have argued for the paradox and

1I provide a more precise definition in Sect. 2.
2I discuss the connection between non-conglomerability and “proof by cases” further

in Sect. 4.3.
3More precisely, it is uncontroversial that the Kolmogorov axiomatization—when for-

mulated to allow for infinite probability spaces—permits their existence. See de Finetti
(1930), Kadane et al. (1986), and Arntzenius et al. (2004) for various examples of non-
conglomerable probability functions. Jaynes (2003), who denies the legitimacy of infinite
probability spaces, is a notable denier of the existence of non-conglomerable probability
functions.

4So called by de Finetti (1972).
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claimed that it is simply a counterintuitive fact about rationality.5 Others
have resisted the paradox by rejecting arguments that purportedly lead to it
or by offering positive arguments against it.6

In this paper, I present a qualitative analogue of the paradox. I show that,
under antecedently plausible assumptions, an analogue of non-conglomerability
can arise for a rational agent’s comparative confidence relation—where com-
parative confidence is the attitude of being at least as confident in one propo-
sition as in another. Just as the more familiar quantitative paradox raises a
number of philosophical issues, so I will show that the qualitative paradox
raises its own distinctive set of philosophical issues. Over the course of the
paper, I will show that the qualitative paradox has relevance to infinites-
imals, monotone continuity, Jaynes (2003)’s probabilistic finitism, and the
relation between numerical credence and comparative confidence. The plan
is as follows.

In Sect. 2, I review the notion of a conglomerable probability function
as well as de Finetti (1972)’s famous example of non-conglomerability. In
Sect. 3, I lay out some constraints on rational comparative conditional
confidence—namely, those of Koopman (1940a)—and define an analogous
notion of conglomerability for an agent’s comparative confidence relation. In
Sect. 4, I show that de Finetti’s non-conglomerable probability function can
be reformulated as a rational comparative confidence relation that is non-
conglomerable. In Sect. 5, I discuss the philosophical significance of this
result. In Sect. 6, I discuss possible responses to the qualitative paradox.
Finally, I close in Sect. 7 with open questions for future work.

2 Probabilistic non-conglomerability

To spell out the notion of a conglomerable probability function, we will need
a few preliminary notions.

First, let (Ω,F , P ) be a conditional probability space. That is, let Ω be
a set of possible outcomes, F a Boolean algebra on Ω, and F0 the set of
non-empty elements of F . Then, P is a real-valued function on F ×F0 that
satisfies:

1. For all A ∈ F , B ∈ F0: P (A|B) ≥ 0.

5See de Finetti (1972), Hill (1980), Kadane et al. (1986), and Arntzenius et al. (2004).
6See Jaynes (2003), Easwaran (2008, 2013a), Pruss (2012), and the responses of Dickey,

Fraser, and Lindley in Hill (1980).



The Qualitative Paradox of Non-Conglomerability 4

2. For all A ∈ F0: P (A|A) = 1.

3. (Finite Additivity.) For all A,B ∈ F and C ∈ F0 such that A∩B = ∅:

P [(A ∪B)|C] = P (A|C) + P (B|C).7 (1)

4. For all A,B,C ∈ F such that (B ∩ C) ∈ F0:

P [(A ∩B)|C] = P [A|(B ∩ C)]P (B|C).8 (2)

Additionally, define unconditional probability via P (A) =df. P (A|Ω) for all
A ∈ F .

Finally, let π be a partition of Ω—that is, a set of non-empty subsets of
Ω such that every element of Ω is in exactly one such subset. Then, P is
conglomerable in π just in case:

For all E ∈ F and all constants k1, k2: if k1 ≤ P (E|h) ≤ k2 for
all h ∈ π, then k1 ≤ P (E) ≤ k2.

9

That is, P is conglomerable in π just in case, whenever the probability of a
proposition conditional on any member of π is bounded by two values, the
unconditional probability of that proposition is also bounded by those values.
Say that P is conglomerable (simpliciter) just in case P is conglomerable
in every partition of Ω; say that P is non-conglomerable otherwise.

A number of examples of non-conglomerable probability functions have
been identified in the literature. Here I review the much-discussed example
of de Finetti (1972).10 I will formulate the example in terms of lotteries so
as to facilitate later discussion.

7I do not assume that P is countably additive. However, I discuss the connection
between countable additivity and conglomerability in Sect. 6.3.

8The above constraints constitute the theory of conditional probability due to de Finetti
(1974) and Dubins (1975). Although the last “multiplicative” constraint is not part of
Kolmogorov (1950)’s familiar axiomatization, it is a generalization of his ratio formula for
conditional probability, according to which P (A|B) = P (A ∩ B)/P (B) when P (B) > 0.
The multiplicative constraint applies even when P (B) = 0 and, as noted by Easwaran
(2014), is implied by various other theories of conditional probability that allow for P (A|B)
to be defined when P (B) = 0. However, the theory of conditional probability in question—
and which I will assume in what follows—differs from that developed by Kolmogorov (ibid.,
Ch. 5). See Seidenfeld et al. (2013) for a comparison between the two theories.

9See de Finetti (1972, p. 99).
10As de Finetti (1972, pp. 98–99) notes, the example is attributed to Lévy by Cantelli

(1935), though it is based on a still earlier example of de Finetti (1930). See Kadane et
al. (1986) and Arntzenius et al. (2004) for additional examples.
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Consider two countably infinite lotteries L1, L2 such that each lottery
draws exactly one positive integer at random. Moreover, suppose that, for
any positive integers i and j, it is possible that L1 draws i and L2 draws j.
For every i, j ∈ N, let:

• Vi = the proposition that L1 draws i,

• Hj = the proposition that L2 draws j, and

• qi,j = Vi ∩Hj = the proposition that L1 draws i and L2 draws j.

Note that, for every i, j, k, l ∈ N, qi,j 6= ∅ and qi,j ∩ qk,l = ∅ if i 6= k or j 6= l.
Additionally, let:

• A = [q1,1 ∪ (q1,2 ∪ q2,2) ∪ (q1,3 ∪ q2,3 ∪ q3,3) ∪ . . .] = the proposition that
the number drawn from L2 is greater than or equal to that drawn from
L1,

• Ω =
⋃
i,j qi,j = the set of all possible outcomes, and

• F = the smallest Boolean algebra on Ω containing every Vi, every Hj,
and A.11

The figure below provides a pictorial representation of qi,j, Vi, Hj, and A.
Next, suppose that L1 and L2 are fair by the lights of some probability

function P on F . That is, suppose P satisfies the following:

Probabilistic Fairness. For every i, j ∈ N: P (Vi) = P (Vj) and
P (Hi) = P (Hj).

Note that this constraint implies that P (Vi) = P (Hj) = 0 for every i, j ∈ N.12

Finally, suppose that L1 and L2 are independent by the lights of P . That
is, suppose P satisfies the following:

11That is, for any Boolean algebra F ′ on Ω containing every Vi, every Hj , and A: for
all x ∈ F , x ∈ F ′ as well.

12Proof. Suppose for reductio that P (Vi) > 0 for some i ∈ N. Then, because P is real-
valued, there is some positive integer N such that P (Vi) >

1
N . Thus, by finite additivity

and the assumption that L1 is fair by the lights of P , P (V1∪ . . .∪VN+1) = (N+1)P (Vi) >
1 + 1

N , which exceeds 1—in violation of the axioms of probability. A similar story holds
for every P (Hj).
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Figure 1: Each qi,j may be represented as a positive-integer point in the 1st
quadrant of the Cartesian plane, each Vi may be represented as a “Vertical
slice” of the 1st quadrant, each Hj may be represented as a “Horizontal slice”
of the 1st quadrant, and A may be represented as the set of positive-integer
points in the region y ≥ x (with the y-axis vertical and the x-axis horizontal).

Probabilistic Independence. For every i, j ∈ N: P (Hj|Vi) =
P (Hj) and P (Vi|Hj) = P (Vi).

13

Let us now ask: what is P (A)?

• Answer 1.
Let π1 = {Vi : i ∈ N}. Note that π1 is a partition of Ω. Now consider
arbitrary Vi ∈ π1. Note that Vi = (qi,1 ∪ qi,2 ∪ . . .) is infinite, while
Vi ∩ ¬A = (qi,1 ∪ . . . ∪ qi,i−1) is finite. (See Fig. 1 for illustration.) So,

P [(Vi ∩ ¬A)|Vi] = P [(qi,1 ∪ . . . ∪ qi,i−1)|Vi] (3)

13Although the traditional “factorization” analysis takes A and B to be probabilistically
independent just in case P (A ∩B) = P (A)P (B), Fitelson & Hájek (2014) have forcefully
argued that it is more appropriate to regard A and B as (mutually) probabilistically
independent just in case P (A|B) = P (A) and P (B|A) = P (B). Note that, by the 4th
constraint in the definition of conditional probability, these latter claims entail that P (A∩
B) = P (A)P (B).
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= P (qi,1|Vi) + . . .+ P (qi,i−1|Vi) (4)

= P [(Vi ∩H1)|Vi] + . . .+ P [(Vi ∩Hi−1)|Vi] (5)

= P (H1|Vi) + . . .+ P (Hi−1|Vi) (6)

= P (H1) + . . .+ P (Hi−1) (7)

= 0 + . . .+ 0 (8)

= 0. (9)

The reasoning is as follows. (4) results from finite additivity. (5) uses
the definition of qk,l. (6) employs the 2nd and 4th constraints in the def-
inition of conditional probability.14 (7) uses Probabilistic Indepen-
dence. (8) uses the fact that P (Hj) = 0 for every j ∈ N. (9) is simple
arithmetic. Next, by finite additivity, P [(Vi∩¬A)|Vi]+P [(Vi∩A)|Vi] =
P (Vi|Vi) = 1. Thus, P (A|Vi) = P [(Vi ∩A)|Vi] = 1. If P were conglom-
erable in π1, then the fact that P (A|v) = 1 for every v ∈ π1 would
imply that P (A) = 1.

• Answer 2.
Let π2 = {Hj : j ∈ N}. Note that π2 is a partition of Ω. Now consider
arbitrary Hj ∈ π2. Note that Hj = (q1,j ∪ q2,j ∪ . . .) is infinite, while
Hj ∩ A = (q1,j ∪ . . . ∪ qj,j) is finite. (See Fig. 1 for illustration.) By
reasoning analogous to the above, it follows that P [(Hj ∩ A)|Hj] = 0.
Thus, P (A|Hj) = P [(Hj ∩ A)|Hj] = 0. If P were conglomerable in
π2, then the fact that P (A|h) = 0 for every h ∈ π2 would imply that
P (A) = 0.

Of course, P (A) cannot be both 0 and 1, so P must be non-conglomerable
in at least one of π1 and π2. Hence:

Probabilistic Non-Conglomerability. P is non-conglomerable.

So, if a rational agent’s credence function satisfies Probabilistic Fairness
and Probabilistic Independence—and there seems no prima facie reason
it couldn’t—then her credence function must be non-conglomerable. How-
ever, as I said in Sect. 1, it seems irrational for an agent to have a non-
conglomerable credence function. Hence, the (quantitative) paradox of non-
conglomerability.

14In general, these constraints imply that P [(A ∩ B)|B] = P (A|B)P (B|B) = P (A|B).
Thus, P [(Vi ∩H1)|Vi] = P (H1|Vi), . . . , P [(Vi ∩Hi−1)|Vi] = P (Hi−1|Vi).
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In Sect. 4, I present a qualitative analogue of this paradox.15 Before
doing so, we will need some additional theoretical machinery.

3 Comparative confidence

Comparative confidence is the attitude of being at least as confident in one
proposition as in another.16 By contrast, credence is the attitude of believ-
ing some proposition to a particular (numerical) degree. Just as a number
of questions may be asked about the relation between “full” belief and cre-
dence,17 so a number of questions may be asked about the relation between
comparative confidence and credence. For example, are an agent’s credences
somehow reducible to, or less fundamental than, her attitudes of compar-
ative confidence? Or are her attitudes of comparative confidence somehow
reducible to, or less fundamental than, her credences? Or is neither the
case?18

I will not assume any particular answers to such questions in what follows.
Although the present paper may hold special interest for readers who sub-
scribe to a “comparative confidence”-first view, I will merely assume that ra-
tional agents can have attitudes of comparative confidence. This assumption
will suffice to show that there is a qualitative paradox of non-conglomerability
to be reckoned with.

Notation. In what follows, I will take an agent S’s comparative confidence
relation � to be the set of S’s attitudes of comparative confidence. In the
unconditional case, ‘A � B’ means: S is at least as confident in A as she is
in B. In the conditional case, ‘A|B � C|D’ means: S is at least as confident
in A, given B, as she is in C, given D. Additionally, let ‘A|B ≈ C|D’ mean

15In Sect. 6, I discuss common responses to the quantitative paradox as they relate to
possible responses to the qualitative paradox.

16Comparative confidence is also sometimes understood as the attitude of being strictly
more confident in one proposition than another. However, taking comparative confidence
to be the “at least as confident” attitude will simplify the ensuing discussion. Also, the
terms ‘comparative confidence’, ‘qualitative probability’, and ‘comparative probability’ are
often used interchangeably in the literature.

17See Foley (2009).
18Although it may no longer be so widespread, the view that comparative confidence is

somehow more fundamental than credence was held by a number of notable authors in the
history of probability, including Keynes (1921), de Finetti (1937), and Savage (1954). See
Stefánsson (Forthcoming) for a contemporary defense of the view. See Eriksson & Hájek
(2007) for a defense of the view that ‘credence’ is a primitive concept.
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that both A|B � C|D and C|D � A|B—i.e., that S is equally confident in
A, given B, as in C, given D. Also, let ‘A|B � C|D’ mean that A|B � C|D
and it is not the case that C|D � A|B—i.e., that S is strictly more confident
in A, given B, than she is in C, given D.

A number of “representation theorems” have been proven to the effect
that if an agent’s comparative unconditional (conditional) confidence rela-
tion satisfies a particular set of constraints—for example, involving norms
of rationality and perhaps other constraints—then it is representable by an
unconditional (conditional) probability function.19 In particular, a given
comparative conditional confidence relation � is representable by a given
conditional probability function P just in case:

Representability. A|B � C|D iff P (A|B) ≥ P (C|D).

Historically, the establishment of representation theorems has been the
main motivation for studying comparative confidence. Nonetheless, I will
not be concerned with the details of any representation theorem in what
follows. Although I will sometimes appeal to the notion of probabilistic rep-
resentability, my main concern will be with comparative confidence itself—in
particular, comparative conditional confidence. With that said, the plan for
this section is as follows.

In Sect. 3.1, I lay out some widely accepted constraints on rational com-
parative conditional confidence. In Sect. 3.2, I state theorems that are
consequences of these constraints. In Sect. 3.3, I define a notion of conglom-
erability for comparative conditional confidence.

3.1 Koopman’s axioms of rational comparative condi-
tional confidence

The first axiomatization of rational comparative conditional confidence was
provided by Koopman (1940a). In what follows, I will assume that any
rational agent indeed satisfies Koopman’s axioms. Although a number of al-
ternative axiomatizations have since been proposed, nearly all of Koopman’s

19See de Finetti (1937), Savage (1954), and Scott (1964) for notable representation
theorems connecting comparative unconditional confidence to unconditional probability.
See Koopman (1940a) and Suppes & Zanotti (1982) for notable representation theorems
connecting comparative conditional confidence to conditional probability.
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axioms have figured as axioms or theorems in subsequent axiomatizations.20

As such, Koopman’s axioms are widely accepted at least as rational con-
straints on comparative conditional confidence. Thus, the conclusions I will
draw from Koopman’s axioms are quite neutral among extant axiomatiza-
tions.

To spell out Koopman’s axioms, let Ω be the set of outcomes that are
epistemically possible for agent S.21 Also, let F be a Boolean algebra on Ω—
intuitively, the set of propositions that are entertainable by S—and let F0

be the set of non-empty elements of F . Then, S’s comparative conditional
confidence relation � is a binary relation on F×F0 that satisfies the following
axioms. For simplicity, I leave quantification over propositions implicit in the
axioms and theorems that follow.

1. Verified Contingency. k|k � a|h.

2. Implication. If a|h � k|k, then h ⊆ a.

3. Reflexivity. a|h � a|h.

4. Transitivity. If c|l � b|k and b|k � a|h, then c|l � a|h.

5. Antisymmetry. If b|k � a|h, then ¬a|h � ¬b|k.

6. Composition.
Suppose:

(a) (a1 ∩ b1) ∩ h1 6= ∅ and (a2 ∩ b2) ∩ h2 6= ∅.
(b) a2|h2 � a1|h1.
(c) b2|(a2 ∩ h2) � b1|(a1 ∩ h1).

Then: (a2 ∩ b2)|h2 � (a1 ∩ b1)|h1.22

20See Krantz et al. (1971, pp. 221-222) for general discussion of similarities among
Koopman’s axiomatization and other axiomatizations. More specifically, see Luce (1968,
pp. 483-484) for discussion of logical connections among his own axioms and Koopman’s
axioms. Additionally, the axiomatization of Hawthorne (Forthcoming) is nearly identical
to that of Koopman.

21Although Koopman does not speak in terms of ‘epistemic possibilities’, this terminol-
ogy will be useful in what follows.

22Koopman actually states two axioms of composition; the other is analogous.
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7. Decomposition.
Suppose:

(a) (a1 ∩ b1) ∩ h1 6= ∅ and (a2 ∩ b2) ∩ h2 6= ∅.
(b) a1|h1 � a2|h2.
(c) (a2 ∩ b2)|h2 � (a1 ∩ b1)|h1.

Then: b2|(a2 ∩ h2) � b1|(a1 ∩ h1).23

8. Alternative Presumption. If r|s � a|(b ∩ h) and r|s � a|(¬b ∩ h),
then r|s � a|h.24

9. Subdivision.
Suppose the propositions a1, . . . , an, b1, . . . , bn are such that:

(a) ai ∩ aj = bi ∩ bj = ∅ for all i, j = 1, . . . , n such that i 6= j.

(b) a = (a1 ∪ . . . ∪ an) 6= ∅ and b = (b1 ∪ . . . ∪ bn) 6= ∅.
(c) an|a � . . . � a1|a and bn � . . . � b1|b.

Then: bn|b � a1|a.25

3.2 Theorems of rational comparative conditional con-
fidence

In this section, I state three theorems (or straightforward consequences of
theorems) proven in Koopman (1940a) on the basis of the above axioms. I
will appeal to them in Sect. 4.

The first two theorems are relatively straightforward.

23Koopman actually states four axioms of decomposition; the others are analogous.
24This axiom ensures that any rational comparative conditional confidence relation is

conglomerable in any finite partition (in the sense I describe in Sect. 3.3). In Sect. 4,
I describe a comparative conditional confidence relation that satisfies Koopman’s axioms
but is non-conglomerable in some infinite partition. As it turns out, none of my argument
will appeal to this axiom. However, I include it here for completeness.

25As Koopman (1940b) notes, both Alternative Presumption and Subdivision are
entailed by the other axioms along with the assumption that � is complete—that is, that
p|q � r|s or r|s � p|q. However, I will not assume that � is complete in what follows.
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Theorem 1. (p ∩ q)|q ≈ p|q.26

Theorem 2. If p ⊆ q and q ⊆ r, then p|q � p|r.27

To spell out the third theorem, we will need a definition and an assump-
tion.

Definition. For any positive integer n, let an n-scale be a set of n propo-
sitions {u1, . . . , un} such that:

1. u = (u1 ∪ . . . ∪ un) 6= ∅.

2. ui ∩ uj = ∅ for all i, j = 1, . . . , n such that i 6= j.

3. ui|u ≈ uj|u for all i, j = 1, . . . , n.28

That is, an n-scale for agent S is a non-empty set of n mutually disjoint
propositions such that S is equally confident in each of them given the union
of all of them. Intuitively, if Ω is the set of epistemically possible outcomes for
S, then an n-scale is a finite sub-lottery of Ω that S treats as qualitatively fair.

Assumption. For every positive integer n, there is at least one n-scale.29

This assumption, unlike the axioms of Sect. 3.1, should not be viewed as
a rational constraint on comparative conditional confidence. Rather, it is
a contingent claim about an agent’s epistemic context. In Sect. 4, I will
describe an epistemic context in which it holds.

The next theorem, which follows from Koopman’s axioms and Assump-
tion, illuminates a connection between n-scales and fractions.

Theorem 3. Suppose:

1. {u1, . . . , un} is an n-scale and {v1, . . . , vm} is an m-scale.

26This is a straightforward consequence of Koopman’s Theorem 3, the first part of which
states that if (a∩h) ⊆ (b∩h), then b|h � a|h. His proof employs Verified Contingency,
Implication, Reflexivity, Antisymmetry, and Composition. To establish that (p ∩
q)|q � p|q, it suffices to set a = p, b = p ∩ q, and h = q in the theorem. To establish that
p|q � (p ∩ q)|q, it suffices to set a = p ∩ q, b = p, and h = q.

27This is the first part of Koopman’s Theorem 4. His proof employs Verified Contin-
gency, Implication, Reflexivity, Antisymmetry, and Composition.

28This is Koopman’s Definition 1.
29This is Koopman’s Assumption (stated separately from his axioms).
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2. ρ and σ are integers such that 0 ≤ σ ≤ n and 0 ≤ ρ ≤ m.

3. σ
n
≥ ρ

m
.

Then:
(ui1 ∪ . . . ∪ uiσ)|u � (vj1 ∪ . . . ∪ vjρ)|v. (10)

If σ
n
> ρ

m
, then replace ‘�’ with ‘�’ in the above.30

In what follows, I will write P ∗[(ui1 ∪ . . .∪ uiσ)|u] = σ
n

and P ∗[(vj1 ∪ . . .∪
vjρ)|v] = ρ

m
when the above conditions hold. For example, if {u1, u2} is a 2-

scale and {v1, v2, v3} is a 3-scale, then P ∗[u1|(u1 ∪ u2)] = 1
2

and P ∗[(v1 ∪
v2)|(v1 ∪ v2 ∪ v3)] = 2

3
. Thus, n-scales behave intuitively like fractional

probabilities.

3.3 Qualitative conglomerability

By analogy with the definition of probabilistic conglomerability, we may de-
fine conglomerability for an agent S’s comparative conditional confidence
relation � as follows. Let Ω be the set of outcomes that are epistemically
possible for S, F a Boolean algebra on Ω, F0 the set of non-empty elements
of F , and � a binary relation on F × F0. Also, let π be a partition of Ω.
Then, � is conglomerable in π just in case:

For all E, p1, p2 ∈ F and q1, q2 ∈ F0: if p2|q2 � E|h � p1|q1 for
all h ∈ π, then p2|q2 � E|Ω � p1|q1.

Note that the quantitative comparisons of probability which figured in the
definition of probabilistic conglomerability have now been replaced with qual-
itative comparisons of conditional confidence.

Say that � is conglomerable (simpliciter) just in case � is conglomer-
able in every partition of Ω; say that � is non-conglomerable otherwise.

4 Qualitative non-conglomerability

In this section, I present a qualitative analogue of the (quantitative) paradox
of non-conglomerability. In Sects. 4.1–4.2, I show that de Finetti’s non-
conglomerable probability function from Sect. 2 can be reformulated as a

30This is proven as Koopman’s Theorem 14. His proof employs Verified Contingency,
Antisymmetry, Composition, Decomposition, Subdivision, and Assumption.
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comparative confidence relation that satisfies Koopman’s axioms yet is non-
conglomerable. In Sect. 4.3, I discuss the paradoxical nature of this result.

The setup is analogous to that of Sect. 2. First, let S be some agent who
satisfies Koopman’s axioms. As before, let L1 and L2 be countably infinite
lotteries such that, for any positive integers i and j, it is epistemically possible
for S that L1 draws i and L2 draws j. Also, let:

• Vi = the proposition that L1 draws i,

• Hj = the proposition that L2 draws j,

• qi,j = Vi ∩Hj = the proposition that L1 draws i and L2 draws j,

• A = [q1,1 ∪ (q1,2 ∪ q2,2) ∪ (q1,3 ∪ q2,3 ∪ q3,3) ∪ . . .] = the proposition that
the number drawn from L2 is greater than or equal to that drawn from
L1,

• Ω =
⋃
i,j qi,j = the set of all epistemically possible outcomes for S, and

• F = the smallest Boolean algebra on Ω containing every Vi, every Hj,
and A.

Let � be S’s comparative conditional confidence relation on F × F0.
Next, suppose that each lottery is qualitatively fair in the sense that in

the sense that S is just as confident in any integer being drawn by L1 as any
other, and S is just as confident in any integer being drawn by L2 as any
other. That is:

Fairness. For every i, j ∈ N: Vi|Ω ≈ Vj|Ω and Hi|Ω ≈ Hj|Ω.

Finally, suppose that L1 and L2 are qualitatively independent of one another.
That is:

Independence. For every i, j ∈ N: Vi|Hj ≈ Vi|Ω and Hi|Vj ≈
Hi|Ω.31

I now show that Fairness and Independence, in conjunction with Koop-
man’s axioms, entail that � is non-conglomerable. I begin with four lemmas.

31Independence employs the notion of independence for comparative conditional con-
fidence described by Krantz et al. (1971, p. 238).
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4.1 Preliminary lemmas

Lemma 1 states that, unconditionally, S should be equally confident in every
possible outcome in Ω. Hence, S may regard Ω = {q1,1, q1,2, . . .} as the set
of possible outcomes of an individual lottery that is countably infinite and
qualitatively fair.

Lemma 1. For every i, j, k, l ∈ N : qi,j|Ω ≈ qk,l|Ω.

Proof. Let i, j, k, l be arbitrary positive integers. By Fairness and Inde-
pendence, it follows that Hj|Vi ≈ Hj|Ω ≈ Hl|Ω ≈ Hl|Vk. By Transitivity,
Hj|Vi ≈ Hl|Vk.

Now set a1 = Vk, b1 = Hl, h1 = Ω, a2 = Vi, b2 = Hj, and h2 = Ω.
Then, (a1 ∩ b1) ∩ h1 = (Vk ∩ Hl) ∩ Ω = qk,l 6= ∅ and (a2 ∩ b2) ∩ h2 =
(Vi ∩Hj)∩Ω = qi,j 6= ∅. Next, by Fairness, Vi|Ω ≈ Vk|Ω. So, a2|h2 � a1|h1.
Further, since Vi = Vi ∩ Ω and Vk = Vk ∩ Ω, the fact that Hj|Vi ≈ Hl|Vk
entails that Hj|(Vi ∩ Ω) ≈ Hl|(Vk ∩ Ω). So, b2|(a2 ∩ h2) � b1|(a1 ∩ h1).
Thus, by Composition, (Vi ∩Hj)|Ω � (Vk ∩Hl)|Ω. Similarly, setting a1 =
Vi, b1 = Hj, h1 = Ω, a2 = Vk, b2 = Hl, and h2 = Ω, Composition yields
that (Vk ∩Hl)|Ω � (Vi ∩Hj)|Ω. Thus, (Vi ∩Hj)|Ω ≈ (Vk ∩Hl)|Ω. That is,
qi,j|Ω ≈ qk,l|Ω.

Lemma 2 states that, for any positive integer n, any n-member subset
of Ω is an n-scale for S. Hence, S should regard each finite sub-lottery of Ω
as qualitatively fair as well. Lemma 2 entails that Assumption from Sect.
3.2 holds in the epistemic context in question. Thus, Theorem 3 holds as well.

Lemma 2. LetB = {qi1,j1 , . . . , qin,jn}, for arbitrary positive integers i1, . . . , in,
j1, . . . , jn. Then, B is an n-scale.

Proof. Let uk = qik,jk for all k = 1, . . . , n, and let u = (u1 ∪ . . . ∪ un). Since
qi,j 6= ∅ for every i, j ∈ N, u 6= ∅. Also, since qi,j ∩ qk,l = ∅ for all i, j, k, l ∈ N
such that i 6= k or j 6= l, ui ∩ uj = ∅ for all i, j = 1, . . . , n such that i 6= j.

Now set a1 = u, b1 = ul, h1 = Ω, a2 = u, b2 = uk, and h2 = Ω for arbitrary
k, l ≤ n. Note that (a1∩b1)∩h1 = (u∩ul)∩Ω = ul∩Ω = qil,jl∩Ω = qil,jl 6= ∅.
Similarly, (a2 ∩ b2) ∩ h2 = (u ∩ uk) ∩ Ω = uk ∩ Ω = qik,jk 6= ∅. Also, by
Reflexivity, u|Ω � u|Ω. So, a1|h1 � a2|h2. Next, since u ∩ uk = qik,jk and
u∩ul = qil,jl , Lemma 1 entails that (u∩uk)|Ω ≈ (u∩ul)|Ω. So, (a2∩b2)|h2 �
(a1∩b1)|h1. Thus, by Decomposition, uk|(u∩Ω) � ul|(u∩Ω). Since u∩Ω =
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(u1∪. . .∪un)∩Ω = (qi1,j1∪. . .∪qin,jn)∩Ω = (qi1,j1∪. . .∪qin,jn) = u, it follows
that uk|u � ul|u. Similarly, reversing b1 and b2, Decomposition yields that
ul|u � uk|u. As a result, uk|u ≈ ul|u. That is, qik,jk |(qi1,j1 ∪ . . . ∪ qin,jn) ≈
qil,jl |(qi1,j1 ∪ . . . ∪ qin,jn). Thus, B = {qi1,j1 , . . . , qin,jn} is an n-scale.

Note that, using the notation of Sect. 3.2, Lemma 2 entails that P ∗(q1,1|q1,1)
= 1 and P ∗[q1,1|(q1,1 ∪ q1,2)] = 1

2
. Intuitively, Lemma 3 corresponds to the

claim that S’s credence in A, given any Vi, should lie between 1
2

and 1.

Lemma 3. For every i ∈ N: q1,1|q1,1 � A|Vi � q1,1|(q1,1 ∪ q1,2).

Proof. Note that q1,1|q1,1 � A|Vi by Verified Contingency. To show
that A|Vi � q1,1|(q1,1 ∪ q1,2), it suffices (by Antisymmetry) to show that
¬q1,1|(q1,1 ∪ q1,2) � ¬A|Vi.

First, let i be an arbitrary positive integer such that i > 1, Q1,2 = (q1,1 ∪
q1,2), and Qi,2(i−1) = (qi,1∪ . . .∪qi,2(i−1)). By Lemma 2, {q1,1, q1,2} is a 2-scale
and {qi,1, . . . , qi,2(i−1)} is a 2(i− 1)-scale. Now set n = 2, σ = 1,m = 2(i− 1),
and ρ = (i− 1). Since σ

n
≥ ρ

m
, Theorem 3 yields that

q1,2|Q1,2 � (qi,1 ∪ . . . ∪ qi,i−1)|Qi,2(i−1). (11)

Next, note that Vi = (qi,1 ∪ qi,2 ∪ . . .) = (Qi,2(i−1) ∪ qi,2(i−1)+1 ∪ . . .). So,
(qi,1 ∪ . . . ∪ qi,i−1) ⊆ Qi,2(i−1) and Qi,2(i−1) ⊆ Vi. Hence, by Theorem 2,

(qi,1 ∪ . . . ∪ qi,i−1)|Qi,2(i−1) � (qi,1 ∪ . . . ∪ qi,i−1)|Vi. (12)

Recall (cf. Sect. 2) that Vi ∩ ¬A = (qi,1 ∪ . . . ∪ qi,i−1). So,

(qi,1 ∪ . . . ∪ qi,i−1)|Qi,2(i−1) � (Vi ∩ ¬A)|Vi (13)

� ¬A|Vi, (14)

using Theorem 1.
Next, note that q1,2 = (¬q1,1 ∩Q1,2). By Theorem 1, (¬q1,1 ∩Q1,2)|Q1,2 ≈

¬q1,1|Q1,2. As a result, q1,2|Q1,2 ≈ ¬q1,1|Q1,2. So, ¬q1,1|Q1,2 � q1,2|Q1,2.
Putting everything together:

¬q1,1|Q1,2 � q1,2|Q1,2 (15)

� (qi,1 ∪ . . . ∪ qi,i−1)|Qi,2(i−1) (16)

� (Vi ∩ ¬A)|Vi (17)

� ¬A|Vi. (18)
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Thus, by Transitivity, ¬q1,1|Q1,2 � ¬A|Vi. Finally, by Antisymmetry,
A|Vi � q1,1|Q1,2. That is, A|Vi � q1,1|(q1,1 ∪ q1,2).

Note that, by Lemma 2, P ∗[q1,1|(q1,1∪q1,2∪q1,3)] = 1
3
. Intuitively, Lemma

4 corresponds to the claim that S’s credence in A, given any Hi, should lie
between 0 and 1

3
.

Lemma 4. For every i ∈ N: q1,1|(q1,1 ∪ q1,2 ∪ q1,3) � A|Hi � ¬q1,1|q1,1.

Proof. The proof is analogous to that of Lemma 3. First, let i be an arbitrary
positive integer, Q1,3 = (q1,1 ∪ q1,2 ∪ q1,3), and Q3i,i = (q1,i ∪ . . . ∪ q3i,i). By
Lemma 2, {q1,1, q1,2, q1,3} is a 3-scale and {q1,i, . . . , q3i,i} is a 3i-scale. Now
set n = 3, σ = 1,m = 3i, and ρ = i. Since σ

n
≥ ρ

m
, a similar application of

Theorem 3 yields that

q1,1|Q1,3 � (q1,i ∪ . . . ∪ qi,i)|Q3i,i. (19)

Next, note that Hi = (q1,i ∪ q2,i ∪ . . .) = (Q3i,i ∪ q3i+1,i ∪ . . .). So, (q1,i ∪
. . . ∪ qi,i) ⊆ Q3i,i and Q3i,i ⊆ Hi. Hence, by Theorem 2,

(q1,i ∪ . . . ∪ qi,i)|Q3i,i � (q1,i ∪ . . . ∪ qi,i)|Hi. (20)

Recall (cf. Sect. 2) that Hi ∩ A = (q1,i ∪ . . . ∪ qi,i). So,

(q1,i ∪ . . . ∪ qi,i)|Q3i,i � (Hi ∩ A)|Hi (21)

� A|Hi, (22)

using Theorem 1. Putting everything together:

q1,1|Q1,3 � (q1,i ∪ . . . ∪ qi,i)|Q3i,i (23)

� (Hi ∩ A)|Hi (24)

� A|Hi. (25)

Thus, by Transitivity, q1,1|Q1,3 � A|Hi. That is, q1,1|(q1,1 ∪ q1,2 ∪ q1,3) �
A|Hi.

Finally, by Verified Contingency, q1,1|q1,1 � ¬A|Hi. By Antisymme-
try, ¬¬A|Hi � ¬q1,1|q1,1. Since ¬¬A = A, A|Hi � ¬q1,1|q1,1.
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4.2 Main technical result

I now prove the main technical result of the paper:

Qualitative Non-Conglomerability. � is non-conglomerable.

Proof. As in Sect. 2, let π1 = {Vi : i ∈ N} and π2 = {Hj : j ∈ N}. Then, by
Lemmas 3 and 4:

• q1,1|q1,1 � A|v � q1,1|(q1,1 ∪ q1,2) for all v ∈ π1, and

• q1,1|(q1,1 ∪ q1,2 ∪ q1,3) � A|h � ¬q1,1|q1,1 for all h ∈ π2.

Next, set n = 2, σ = 1,m = 3, and ρ = 1. Since σ
n
> ρ

m
, Theorem 3 yields

that
q1,1|(q1,1 ∪ q1,2) � q1,1|(q1,1 ∪ q1,2 ∪ q1,3). (26)

Now suppose for reductio that � is conglomerable in both π1 and π2. Then,
q1,1|q1,1 � A|Ω � q1,1|(q1,1∪ q1,2) and q1,1|(q1,1∪ q1,2∪ q1,3) � A|Ω � ¬q1,1|q1,1.
As a result,

A|Ω � q1,1|(q1,1 ∪ q1,2) (27)

� q1,1|(q1,1 ∪ q1,2 ∪ q1,3). (28)

So, by Transitivity (and the definition of ‘�’), A|Ω � q1,1|(q1,1 ∪ q1,2 ∪ q1,3).
But we just saw that q1,1|(q1,1 ∪ q1,2 ∪ q1,3) � A|Ω. Contradiction. It follows
that � is non-conglomerable in at least one of π1 and π2. Hence, � is non-
conglomerable.

Remark. Although Qualitative Non-Conglomerability is a conse-
quence of Koopman’s axioms, Fairness, and Independence, it should be
noted that Independence was not essential to the proof of this result. Be-
cause the possible outcomes of any countably infinite lottery can be labeled
with the pairs of positive integers (since both sets are countably infinite), any
comparative confidence relation that treats some countably infinite lottery
as fair satisfies Lemma 1 with respect to some labeling of this sort. Since
Independence was only used in proving Lemma 1, it was therefore not es-
sential to the above proof. Hence, non-conglomerability afflicts any agent
who satisfies Koopman’s axioms and treats some countably infinite lottery
as qualitatively fair.
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4.3 The qualitative paradox of non-conglomerability

Although Koopman’s axioms of rational comparative confidence do not en-
joy the popularity of Kolmogorov’s axioms of probability, they seem quite
plausible upon reflection. Additionally, there seems no prima facie reason a
rational agent couldn’t treat some countably infinite lottery as qualitatively
fair. As I will explain, however, the consequence that a rational agent can
have a non-conglomerable comparative confidence relation is quite counterin-
tuitive. This consequence is the qualitative paradox of non-conglomerability.

Consider the following inference rule of deductive logic:

Proof by Cases.
Suppose:

1. Q1 → R.

2. Q2 → R.

Then: (Q1 ∨Q2)→ R.32

Proof by Cases is as intuitively plausible an inference rule as any. The fol-
lowing constraint on rational comparative conditional confidence is an epis-
temic cousin of it:

Confidence by Cases.
Suppose:

1. a|b1 � r|s.
2. a|b2 � r|s.

Then: a|(b1 ∪ b2) � r|s.33

Let S be an arbitrary rational agent. In words, Confidence by Cases
says:

Confidence by Cases.
Suppose:

32Strictly speaking, this inference rule results from applying the deduction theorem to
what is ordinarily called “proof by cases”. However, this inference rule will be more
relevant than the latter in what follows.

33Confidence by Cases is a special case of Koopman’s axiom of Alternative Pre-
sumption. However, I have renamed the latter for illustrative purposes.
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1. S is at least as confident in a, given b1, as she is in r, given
s.

2. S is at least as confident in a, given b2, as she is in r, given
s.

Then: S is at least as confident in a, given b1 or b2, as she is in r,
given s.

Although Confidence by Cases may not seem as intuitively compelling
as Proof by Cases—if only because it involves the relatively unfamiliar
notion of comparative conditional confidence—it still seems quite plausible.

Next, consider the following infinitary version of Proof by Cases:

Infinitary Proof by Cases.
Suppose:

1. Q1 → R.

2. Q2 → R.
...

Then: (Q1 ∨Q2 ∨ . . .)→ R.

Infinitary Proof by Cases seems no less plausible than its finite version
(provided that we permit infinitary inferences). It is structurally similar to
the following infinitary version of Confidence by Cases:

Infinitary Confidence by Cases.
Suppose:

1. a|b1 � r|s.
2. a|b2 � r|s.

...

Then: a|(b1 ∪ b2 ∪ . . .) � r|s.

Infinitary Confidence by Cases seems no less intuitively plausible than its
finite version (provided that we permit rational agents to have infinitely many
attitudes, if only dispositionally). Nonetheless, it conflicts with Qualitative
Non-Conglomerability.

To see this, let r = q1,1, s = (q1,1 ∪ q1,2), and t = (q1,1 ∪ q1,2 ∪ q1,3). Note
that Lemma 3 entails the following:
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1. A|V1 � r|s.

2. A|V2 � r|s.
...

So, by Infinitary Confidence by Cases, we would intuitively expect:

A|(V1 ∪ V2 ∪ . . .) � r|s. (29)

Similarly, Lemma 4 entails:

1. r|t � A|H1.

2. r|t � A|H2.
...

So, by Infinitary Confidence by Cases, we would intuitively expect:

r|t � A|(H1 ∪H2 ∪ . . .). (30)

However, Qualitative Non-Conglomerability entails that at least one of
these intuitive expectations is false.34 Hence, Infinitary Confidence by
Cases must fail as well.

Although this consequence is not a violation of deductive logic, it is still
surprising. Just as the infinitary version of Proof by Cases seems intu-
itively plausible, so does the infinitary version of Confidence by Cases. It
seems quite odd that the infinitary version of one should be true while the
infinitary version of the other is false. Yet this is a consequence of Koop-
man’s intuitively plausible axioms and the intuitively plausible assumption
that a rational agent can treat a countably infinite lottery as qualitatively
fair. Hence, the qualitative paradox of non-conglomerability.35

34Proof. We saw that � is non-conglomerable in at least one of π1 and π2. Suppose that
� is non-conglomerable in π1. Then, it is not the case that q1,1|q1,1 � A|Ω � q1,1|(q1,1 ∪
q1,2). However, by Reflexivity, q1,1|q1,1 � A|Ω. Hence, A|Ω 6� q1,1|(q1,1 ∪ q1,2). That is,
A|Ω 6� r|s. Since Ω = (V1 ∪V2 ∪ . . .), it follows that A|(V1 ∪V2 ∪ . . .) 6� r|s. Next, suppose
that � is non-conglomerable in π2. Then, it is not the case that q1,1|(q1,1 ∪ q1,2 ∪ q1,3) �
A|Ω � ¬q1,1|q1,1. By Verified Contingency, q1,1|q1,1 � ¬A|Ω. So, by Antisymmetry,
A|Ω � ¬q1,1|q1,1. Hence, it is not the case that q1,1|(q1,1 ∪ q1,2 ∪ q1,3) � A|Ω. That is,
r|t 6� A|Ω. Since Ω = (H1 ∪H2 ∪ . . .), it follows that r|t 6� A|(H1 ∪H2 ∪ . . .).

35Although de Finetti (1972, p. 104) only considered probabilistic non-conglomerability
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5 Philosophical significance of the qualitative

paradox

In this section, I argue that the qualitative paradox of non-conglomerability
has distinctive philosophical significance for at least three reasons.

First, the qualitative paradox exposes a new kind of non-conglomerability.
Second, the qualitative paradox entails the quantitative paradox, although
the converse is not the case. Third, the qualitative paradox has relevance
to infinitesimals and the characterization of probabilistically fair, infinite
lotteries.

5.1 Reason 1: Qualitative paradox exposes a new kind
of non-conglomerability

Because the quantitative paradox of Sect. 2 involves credence and the quali-
tative paradox of Sect. 4 involves comparative confidence, the latter involves
a distinct kind of non-conglomerability. As past research has focused exclu-
sively on probabilistic non-conglomerability, the qualitative paradox exposes
a new (albeit analogous) avenue of potential research—namely, investigation
into the sources and varieties of qualitative non-conglomerability. I discuss
some open questions in Sect. 7.

It may be unsurprising that a kind of non-conglomerability can arise
in a qualitative setting. In particular, it might be thought that the mere
existence of de Finetti’s non-conglomerable probability function P entails
the existence of a rational comparative confidence relation—for example,
one that is representable by P—that is non-conglomerable in an analogous
manner. As such, it might be thought that there are no distinctive questions

to be in superficial—but not actual—violation of deductive logic as well, it should be
remembered that his view of probability was deeply operationalist. Famously, de Finetti
held that all statements of probability were to be understood ultimately in terms of betting
ratios. Hence, from an operationalist perspective, probabilistic non-conglomerability may
not appear so odd because its consequences for betting behavior do not so saliently violate
analogues of deductive logic. By contrast, qualitative non-conglomerability involves real
doxastic attitudes that violate a clear epistemic analogue of a deductive inference rule.
Thus, qualitative non-conglomerability is apt to appear more odd than de Finetti thought
probabilistic non-conglomerability to be. Probabilistic non-conglomerability may simi-
larly appear more odd under less operationalist, more realist interpretations of subjective
probability.
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of non-conglomerability to be pursued at the qualitative level because they
can all be pursued in an analogous fashion at the quantitative level.

As I will argue, however, these thoughts are mistaken. First, there is
no rational comparative confidence relation that is representable by P and
is analogously non-conglomerable because P cannot represent any rational
comparative confidence relation.36 Second, there is not even any rational
comparative confidence relation that is “almost” representable by P (in the
sense I describe below) and is analogously non-conglomerable. Thus, the
quantitative non-conglomerability result of Sect. 2 does not, in any straight-
forward sense, entail the qualitative paradox.

Informally, my argument turns on the fact that P makes no discrimina-
tions among propositions of probability 0 (or 1), whereas all rational compar-
ative confidence relations do make at least some discriminations among such
propositions. Since the manner in which we saw P to be non-conglomerable
entails treating all propositions of probability 0 (or 1) as on par, it will
follow that there is no rational comparative confidence relation that is non-
conglomerable in a manner entirely analogous to that in which P is non-
conglomerable. I now state matters more precisely.

First, suppose for reductio that P can indeed represent some rational com-
parative confidence relation �. As we saw in Sect. 2, P (V1|Ω) = P (V2|Ω) =
0. So, by finite additivity, P [(V1 ∪ V2)|Ω] = 0. Next, by Representability,
V1|Ω ≈ V2|Ω ≈ (V1 ∪ V2)|Ω. However, it is a consequence of Koopman’s
axioms that (V1 ∪ V2)|Ω � V1|Ω.37 Contradiction. Thus, P cannot represent
any rational comparative confidence relation.

Next, suppose there is some rational comparative confidence � that is
“almost” representable by P . That is, suppose the following holds:

Almost Representability. If A|B � C|D, then P (A|B) ≥
P (C|D).

In the Appendix, I show that any (conditional) probability function can al-
most represent some rational comparative confidence relation and, in fact, P

36Here, and throughout Sect. 5, I use the term ‘rational comparative confidence relation’
to denote any comparative confidence relation that satisfies Koopman’s axioms. In Sect.
6, I discuss the question of whether the non-conglomerable comparative confidence relation
of Sect. 4 is indeed rationally permissible.

37This claim is a straightforward consequence of Theorem 3 in Koopman (1940a), the
second part of which states that if (a ∩ h) is a proper subset of (b ∩ h), then b|h � a|h.
Note that (V1 ∩Ω) is a proper subset of (V1 ∪V2)∩Ω. Thus, setting a = V1, b = (V1 ∪V2),
and h = Ω yields that (V1 ∪ V2)|Ω � V1|Ω.
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can almost represent the comparative confidence relation of Sect. 4. Nonethe-
less, as I will now show, there is no rational comparative confidence relation
that is almost representable by P and is analogously non-conglomerable.

Let i, j be arbitrary positive integers. In Sect. 2, we saw that P is
non-conglomerable in the following manner:

Fact1. 1 ≥ P (A|Vi) ≥ 1 and 0 ≥ P (A|Hj) ≥ 0, yet P (A) < 1 or
P (A) > 0.38

Since P (q1,1|q1,1) = 1 and P (¬q1,1|q1,1) = 0, Fact1 entails:

Fact2. P (q1,1|q1,1) ≥ P (A|Vi) ≥ P (q1,1|q1,1) and P (¬q1,1|q1,1) ≥
P (A|Hj) ≥ P (¬q1,1|q1,1), yet P (A|Ω) < P (q1,1|q1,1) or P (A|Ω) >
P (¬q1,1|q1,1).

Hence, we might expect that P can almost represent some rational com-
parative confidence relation � that is non-conglomerable in an analogous
manner:

Condition. q1,1|q1,1 � A|Vi � q1,1|q1,1 and ¬q1,1|q1,1 � A|Hj �
¬q1,1|q1,1, yet q1,1|q1,1 � A|Ω or A|Ω � ¬q1,1|q1,1.

As it turns out, however, there is no rational comparative confidence relation
that satisfies this condition.39 So, if P can almost represent some rational
comparative confidence relation � that is non-conglomerable, then � must
be non-conglomerable in a manner not entirely analogous to that in which
P is non-conglomerable. Explicit construction—of the sort I provide in Sect.
4—is required to see that there is indeed such a relation.

In general, then, one cannot simply “read off” a rational comparative
confidence relation from a non-conglomerable probability function and infer
that the former will be non-conglomerable. Qualitative non-conglomerability
must be investigated on its own terms.

38Although I only explicitly appealed to the fact that P (A) 6= 0 or P (A) 6= 1 to show
that P is non-conglomerable, the assumption that A is in the algebra on which P is defined
ensures that P (A) < 1 or P (A) > 0.

39I show here that A|Vi 6� q1,1|q1,1 for any rational comparative confidence relation
�. First, by Verified Contingency, q1,1|q1,1 � Vi|Vi. Next, note that (A ∩ Vi) is a
proper subset of (Vi ∩ Vi). So, by the aforementioned Theorem 3 in Koopman (1940a),
Vi|Vi � A|Vi. Thus, by Transitivity, q1,1|q1,1 � A|Vi. Hence, A|Vi 6� q1,1|q1,1.
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5.2 Reason 2: The qualitative paradox entails the quan-
titative paradox

In the previous section, I showed that the quantitative non-conglomerability
result of Sect. 2 does not, in any straightforward sense, entail the qualitative
paradox. By contrast, I now show that there is a sense in which the qual-
itative non-conglomerability result of Sect. 4 does entail the quantitative
paradox. Hence, there is a sense in which the qualitative paradox entails the
quantitative paradox, although the converse is not the case.

Let P be an arbitrary probability function that can almost represent the
comparative confidence relation � of Sect. 4. As before, let π1 = {Vi : i ∈ N}
and π2 = {Hj : j ∈ N}. Then, by Lemma 3, Lemma 4, and the fact that �
is almost representable by P :

• P (q1,1|q1,1) ≥ P (A|v) ≥ P [q1,1|(q1,1 ∪ q1,2)] for all v ∈ π1, and

• P [q1,1|(q1,1 ∪ q1,2 ∪ q1,3)] ≥ P (A|h) ≥ P (¬q1,1|q1,1) for all h ∈ π2.

Note that P (q1,1|q1,1) = 1 and, by finite additivity, P (¬q1,1|q1,1) = 0. Addi-
tionally, P [q1,1|(q1,1 ∪ q1,2)] = 1

2
and P [q1,1|(q1,1 ∪ q1,2 ∪ q1,3)] = 1

3
.40 Plugging

these values into the above then yields:

• 1 ≥ P (A|v) ≥ 1
2

for all v ∈ π1, and

• 1
3
≥ P (A|h) ≥ 0 for all h ∈ π2.

Since it cannot be that both P (A) ≥ 1
2

and P (A) ≤ 1
3
, P must be non-

conglomerable in at least one of π1 and π2. Hence, P is non-conglomerable.
Since P was arbitrary, it follows that any probability function that can al-
most represent � is non-conglomerable. Finally, since � is indeed almost
representable by some probability function—for example, by de Finetti’s—it
follows that there is some probability function that is non-conglomerable. In
this sense, the qualitative paradox entails the quantitative paradox.

Although the fact that the qualitative paradox entails the quantitative
paradox (but not vice versa) is noteworthy in its own right, it acquires special

40By Lemma 2, {q1,1, q1,2} and {q1,1, q1,2, q1,3} are a 2-scale and a 3-scale, respectively.
So, q1,1|(q1,1∪ q1,2) ≈ q1,2|(q1,1∪ q1,2) and q1,1|(q1,1∪ q1,2∪ q1,3) ≈ q1,2|(q1,1∪ q1,2∪ q1,3) ≈
q1,3|(q1,1 ∪ q1,2 ∪ q1,3). Additionally, by finite additivity and the fact that � is almost
representable by P , it follows that P [q1,1|(q1,1 ∪ q1,2)] = P [q1,2|(q1,1 ∪ q1,2)] = 1

2 and
P [q1,1|(q1,1 ∪ q1,2 ∪ q1,3)] = P [q1,2|(q1,1 ∪ q1,2 ∪ q1,3)] = P [q1,3|(q1,1 ∪ q1,2 ∪ q1,3)] = 1

3 .
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significance if one regards comparative confidence as somehow more funda-
mental than credence. In particular, if a rational agent’s credences are merely
an (almost) representation of her attitudes of comparative confidence, then
the qualitative paradox explains why the quantitative paradox arises at all:
the latter must—out of representational necessity—arise.

5.3 Reason 3: Relevance to infinitesimals

In this section, I show that the qualitative paradox entails that any prob-
ability function—whether real-valued or extended-valued—that treats some
countably infinite lottery as fair must be non-conglomerable. Hence, one
cannot avoid the quantitative paradox of non-conglomerability merely by ap-
pealing to infinitesimals.

First, as I showed in the previous section, any probability function that
can almost represent the non-conglomerable comparative confidence relation
� of Sect. 4 must be non-conglomerable. Additionally, as I remarked in Sect.
4.2, � need not satisfy Independence in order to be non-conglomerable; it
need only satisfy Koopman’s axioms and Fairness. Hence, a general result
holds: any probability function that can almost represent a comparative con-
fidence relation that satisfies Koopman’s axioms and treats some countably
infinite lottery as fair must be non-conglomerable.

Next, let L be a countably infinite lottery, and let L be fair with respect
to some probability function P . That is, let P (i) = P (j) for any possible
outcomes i, j of L. In the Appendix, I show that any (conditional) probabil-
ity function can almost represent some comparative confidence relation that
satisfies Koopman’s axioms. So, if the only constraints on some comparative
confidence relation � are that it satisfies Koopman’s axioms and treats L as
fair, then clearly P can almost represent �. Because the qualitative paradox
ensures that � is non-conglomerable, it follows that P is non-conglomerable
as well. Thus, any probability function that treats some countably infinite
lottery as fair must be non-conglomerable.

In Sect. 2, we saw that de Finetti’s real-valued probability function
treated two countably infinite lotteries as fair and thereby assigned each pos-
sible outcome probability 0. By contrast, some have argued that it is more
appropriate to characterize a probabilistically fair, countably infinite lottery
via a probability function that can take on values beyond the real numbers.
For example, Wenmackers and Horsten (2013) argue that the possible out-
comes of such a lottery should be assigned a positive yet infinitesimal value.



The Qualitative Paradox of Non-Conglomerability 27

By the result of the previous paragraph, it follows that any such probability
function must be non-conglomerable.41

A consequence of this fact is that would be inappropriate to criticize a
purported characterization of a countably infinite, probabilistically fair lot-
tery solely on the grounds that it fails to be conglomerable.42 The quali-
tative paradox ensures that any such characterization is bound to be non-
conglomerable. One cannot escape non-conglomerability merely by expand-
ing the range of one’s probability function.

6 Responses to the qualitative paradox

A number of responses to the qualitative paradox of non-conglomerability are
available. Although I will not endorse any particular response, I will canvass
some possible options in this section. In Sect. 6.1, I discuss the option of
accepting the paradox. In Sects. 6.2–6.4, I discuss options for denying it.

6.1 Option 1: Accept the paradox

Recall that the qualitative paradox is a consequence of Koopman’s axioms
and the assumption that a rational agent can treat a countably infinite lottery
as qualitatively fair.43 One response to the paradox is simply to bite the
bullet: accept Koopman’s axioms, accept the assumption about qualitative
fairness, and thereby accept the paradox as a counterintuitive fact about
rationality.

de Finetti (1972) himself was a notable defender of the quantitative para-
dox of non-conglomerability. He had little difficulty stomaching it:

At worst, one could experience that uneasy feeling which in all
fields of mathematics is caused by the introduction of the new
characteristic properties of infinity, and which lasts until it is
relieved by familiarity and reflection. (p. 104)

41Pruss (2014) already observes that any such probability function is non-conglomerable.
However, while his observation draws on specific mathematical properties of such functions,
the route provided here illustrates the representational necessity of this fact.

42Pruss (2014) levels this criticism, among others.
43As I remarked in Sect. 4.2, Independence is not necessary to generate the paradox.
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Perhaps we should heed de Finetti’s words and simply learn to live with
qualitative non-conglomerability as well.44

6.2 Option 2: Deny some of Koopman’s axioms

Alternatively, we might deny the qualitative paradox. One way to do so
is by deying some of Koopman’s axioms that are appealed to in the argu-
ment for the paradox.45 However, it is unclear which axioms are most to
“blame” for the paradox—Antisymmetry? Composition?—or whether
there is positive reason to reject any of them. Moreover, although some
authors—including Luce (1968) and Krantz et al. (1971)—have argued that
Koopman’s axiomatization is somewhat inelegant, there is widespread agree-
ment that Koopman’s axioms are plausible at least as rational constraints
on comparative conditional confidence. So, it is unclear how promising this
option is.

That said, alleged counterexamples have been raised to some widely ac-
cepted axioms of rational comparative unconditional confidence that are
analogous to some of Koopman’s axioms (e.g., Transitivity).46 However,
the question of whether any such alleged counterexamples are plausible—
or can be reformulated as plausible counterexamples to any of Koopman’s
axioms—lies beyond the scope of the present paper.

6.3 Option 3: Deny Fairness

Another way to block the qualitative paradox is to deny that any rational
comparative confidence relation can satisfy Fairness. That is, we might
reject the rational permissibility of any comparative confidence relation that
treats some countably infinite lottery as fair. Because Fairness appears to
be logically consistent with Koopman’s axioms, pursuing this route would
likely involve appealing to principles of rational comparative confidence that
go beyond Koopman’s axioms. What might such principles look like?

Here is an obvious candidate principle:

44Additional authors who accept the quantitative paradox include Hill (1980), Kadane
et al. (1986), and Arntzenius et al. (2004).

45As I said in footnote 24, the argument appeals to all of Koopman’s axioms except for
Alternative Presumption.

46See Fishburn (1986) for discussion.
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Conglomerability. Every rational comparative confidence rela-
tion is conglomerable.

Clearly, Conglomerability suffices to block the satisfaction of Fairness by
any comparative confidence relation that satisfies Koopman’s axioms. But
should Conglomerability be accepted as a principle of rationality?

If Conglomerability is accepted as a basic principle of rationality—
one that does not follow from other principles of rationality—then it has
the potential to seem ad hoc. A non-conglomerable comparative confidence
relation is counterintuitive, to be sure, but is that reason enough to accept
Conglomerability as a basic principle of rationality? Perhaps we should fol-
low de Finetti’s example and simply accept qualitative non-conglomerability
as yet another counterintuitive phenomenon that arises from considerations
involving infinity. Alternatively, if Conglomerability is accepted as a de-
rived principle of rationality—one that does follow from other principles of
rationality—then the question arises as to which principles of rationality it
follows from. But the nature of such principles is not immediately clear.

Another route takes its cue from de Finetti’s original probabilistic setup.
Some have argued that no agent should have a probabilistically fair credence
function in the outcomes of a countably infinite lottery on the grounds that
any such function violates countable additivity.47 Countable additivity is the
countable extension of finite additivity:

(Countable additivity.) For mutually disjoint propositionsA1, A2, . . .,

P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2) + . . . (31)

It is easy to see that de Finetti’s probability function P is not countably
additive.48 Thus, insofar as countable additivity is a rational constraint on
credence—about which more soon—P is not a rationally permissible credence
function. Moreover, Hill & Lane (1986) show that a probability function is
countably additive if and only if it is conglomerable in all countable parti-
tions. Hence, to ensure qualitative conglomerability (at least, in all countable
partitions), we might search for some constraint on comparative confidence
that (1) is a qualitative counterpart of countable additivity and (2) conflicts
with Fairness.

47See Bartha (2004) for discussion.
48Because P (Vi) = 0 for every positive integer i, P (V1) + P (V2) + . . . = 0 + 0 + . . . = 0.

However, P (Ω) = P (V1 ∪ V2 ∪ . . .) = 1. So, P (V1 ∪ V2 ∪ . . .) 6= P (V1) + P (V2) + . . .
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As it turns out, there is indeed such a constraint. Villegas (1964) shows
that, for an unconditional comparative confidence relation � that satisfies
constraints analogous to Koopman’s axioms, a necessary—but not sufficient—
condition for � to be representable by a countably additive probability func-
tion is that � satisfies following:

Monotone Continuity.
Suppose:

(a) (A1, A2, . . .) is a monotone non-decreasing sequence of propo-
sitions.49 That is: A1 ⊆ A2 ⊆ . . .

(b) A = ∪iAi.
(c) B � Ai for all i.

Then: B � A.50

In words, Monotone Contintuity says: if the monotone non-decreasing
propositions A1, A2, . . . converge to proposition A, then the judgment that
one should be at least as confident in B as in each Ai carries through in the
limit.51

Fairness, in conjunction with Koopman’s axioms, is inconsistent with
Monotone Continuity. To see this, let � be the non-conglomerable com-
parative confidence relation of Sect. 4.52 Also, let A1 = V1, Ai+1 = (Ai∪Vi+1)
for i > 1, A = ∪iAi = Ω, and B = Ω−A1. It follows that A1 ⊆ A2 ⊆ . . . and

49A,B,A1, A2, . . . are arbitrary propositions in the algebra F on which � is defined.
I follow the formulation of Fishburn (1986, p. 342), who allows F to be an arbitrary
Boolean algebra (not necessarily a σ-algebra, as in the original formulation of Villegas).

50Chateauneuf & Jaffray (1984) show that a necessary and sufficient condition for � to
be representable by a countably additive probability function is that � satisfies Monotone
Continuity as well as a particular “Archimedean” condition. At the time of this writing,
it does not appear to be known what necessary and sufficient conditions may be given under
which � is almost representable by a countably additive probability function. However, see
Chuaqui & Malitz (1983) and Schwarze (1989) for results—all of which involve Monotone
Continuity—in this direction.

51I adapt the paraphrase of Fishburn (1986, pp. 342–343) here.
52In what follows, I will take ‘C � D’ to mean that C|Ω � D|Ω.
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B � Ai for all i.53 Nonetheless, B 6� A.54 So, � violates Monotone Conti-
nuity. Thus, insofar as we should accept Koopman’s axioms and Monotone
Continuity, we should reject Fairness—and the rational permissibility of
the comparative confidence relation in question.

Now, this is not the place to assess whether countable additivity—or its
qualitative counterpart of Monotone Continuity—is indeed a rational con-
straint on doxastic attitudes. That said, although there has been considerable
discussion concerning the rational merits of countable additivity,55 there has
been correspondingly little discussion concerning that of Monotone Con-
tinuity.56 Moreover, because Monotone Continuity is only a necessary—
but not sufficient—condition for a rational comparative confidence relation to
be representable by a countably additive probability function, arguments for
or against countable additivity do not necessarily translate into arguments
for or against Monotone Continuity. Nonetheless, analogous questions
arise:

• Is Monotone Continuity more intuitively plausible than its nega-
tion?57

• Does violating Monotone Continuity make one susceptible to a

53First, A1 ⊆ A2 ⊆ . . . because V1 ⊆ (V1 ∪ V2) ⊆ . . . Next, let i, j be arbitrary positive
integers. By Fairness, Vi|Ω ≈ Vj |Ω. So, V1|Ω ≈ V2|Ω, . . . , Vi+1|Ω ≈ Vi+2|Ω. Next, by
a straightforward application of Theorem 6 of Koopman (1940a), it follows that (V1 ∪
. . . ∪ Vi+1)|Ω ≈ (V2 ∪ . . . ∪ Vi+2)|Ω. Additionally, note that B = Ω − A1 = Ω − V1 =
(V2 ∪ V3 ∪ . . .). So, (V2 ∪ . . . ∪ Vi+2) ⊆ B. Hence, by the aforementioned Theorem 3 of
Koopman (1940a), B|Ω � (V2 ∪ . . . ∪ Vi+2)|Ω. Finally, since Ai+1 = (V1 ∪ . . . ∪ Vi+1),
Ai+1|Ω ≈ (V2 ∪ . . . ∪ Vi+2)|Ω. By Transitivity, B|Ω � Ai+1|Ω. For similar reasons,
B|Ω � A1|Ω. Hence, B|Ω � Ai|Ω. That is, B � Ai.

54Note that, since V1 ∩ Vi = ∅ for all i > 1, B = (V2 ∪ V3 ∪ . . .) is a proper subset of
A = (V1 ∪ V2 ∪ . . .). So, the aforementioned Theorem 3 of Koopman (1940a) entails that
A|Ω � B|Ω. Hence, B 6� A.

55See de Finetti (1972), Bartha (2004), Howson (2008), and Easwaran (2013b).
56For example, Fishburn (1986), in a comprehensive literature review on axioms of com-

parative probability, merely remarks that “Monotone continuity is quite appealing” (343).
Similarly, Fine (1973) only says, “Unlike [other axioms of comparative probability], we
are inclined to view [monotone continuity] as attractive but not necessary for a char-
acterization of [comparative probability]” (21). However, both authors discuss relevant
representation theorems at length.

57See de Finetti (1972, pp. 91–2), who argues that the intuitive plausibility of the
possibility of a probabilistically fair, countably infinite lottery is a reason to reject countable
additivity.
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“qualitative” Dutch Book or other pragmatic failing?58

• Can Monotone Continuity be justified on epistemic grounds?59

• And so on.60

I cannot address these questions here, but they are the sorts of questions that
should be asked in assessing whether the non-conglomerable comparative
confidence relation of Sect. 4 is rationally permissible.

6.4 Option 4: Deny the legitimacy of F
The qualitative non-conglomerability result of Sect. 4 only has rational sig-
nificance if all of the propositions in F can figure in some rational agent’s
comparative confidence relation. There are a couple of ways one might deny
this to be the case and thereby block the qualitative paradox.

First, one might deny that some propositions in F are entertainable
by any agent (rational or otherwise). In particular, one might deny that
A = [q1,1 ∪ (q1,2 ∪ q2,2) ∪ (q1,3 ∪ q2,3 ∪ q3,3) ∪ . . .] is entertainable because
it is an infinite set of propositions. If A is not entertainable by any agent,
then clearly the argument for the qualitative paradox—which appeals essen-
tially to comparisons of conditional confidence that involve A—does not go
through.

Recall, however, that A is merely the proposition that the number drawn
by L2 is greater than or equal to that drawn by L1. Why couldn’t one enter-
tain this proposition? (And did I not just do so?) More generally, since F
only contains propositions that are formed by Boolean operations (with re-
spect to Ω) on quite ordinary and non-gerrymandered propositions—namely,
every Vi, every Hj, and A—it seems implausible that some propositions in
F should fail to be entertainable.

Alternatively, one might allow that every proposition in F is entertainable
yet hold that some propositions in F cannot figure in any rational agent’s

58See Icard (2016), who provides a pragmatic argument for other constraints on com-
parative confidence.

59See Fitelson & McCarthy (2014), who generalize Joyce (1998, 2009)’s epistemic argu-
ments for probabilism to justify other constraints on comparative confidence.

60For example, Easwaran (2013b, Sect. 2) provides an argument for countable addi-
tivity that is neither “pragmatic” nor “epistemic”. Can Easwaran’s argument can be
reformulated as an argument for Monotone Continuity?
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attitudes of comparative confidence. In particular, one might adopt a qual-
itative analogue of the probabilistic finitism espoused by Jaynes (2003, pp.
43–44).61 According to Jaynes’ “finite sets policy”, we should only ascribe
probabilities directly to finite sets of propositions; infinite sets, like A, have
probabilities only relative to particular limiting processes on finite sets.62

Jaynes argues that adoption of his “finite sets policy” is key to blocking a
number of probabilistic paradoxes—including that of non-conglomerability
(ibid., Ch. 15). One might adopt an analogous policy towards rational com-
parative confidence and thereby attempt to block the qualitative paradox of
non-conglomerability.

Whatever the merits of the “finite sets policy” with respect to quantita-
tive probability, however, an analogous policy does not seem plausible with
respect to rational comparative confidence. For example, if one can enter-
tain the proposition A—and I just argued that one easily can—then it seems
clear that one should be at least as confident in A as in any of its subsets.
Limiting processes on finite sets of propositions seem wholly irrelevant to
the question of the rationality of this judgment. More generally, Koopman’s
axioms—all of which involve simple set-theoretic relations (if any) among
propositions—seem just as intuitively plausible with respect to infinite sets
of propositions as with respect to finite sets. Thus, if one wishes to block the
qualitative paradox of non-conglomerability via Jaynes-style finitism, then
it seems one must deny that some of Koopman’s axioms apply to infinite
sets. However, unless one adopts a more radical finitism about the possible
contents of thought, it is unclear why this should be the case.

61Although Jaynes never uses the term ‘probabilistic finitism’, it is clear that he is some
kind of finitist about probability: “In our view, an infinite set cannot be said to possess
any ‘existence’ and mathematical properties at all—at least, in probability theory—until
we have specified the limiting process that is to generate it from a finite set. In other
words, we sail under the banner of Gauss, Kronecker, and Poincaré rather than Cantor,
Hilbert, and Bourbaki.” (ibid., xxii)

62More precisely, let X be a countably infinite set of propositions, a = (a1, a2, . . .) a
countably infinite sequence of finite sets of propositions, and P a probability function on
the members of a. Then, X has probability p relative to a just in case X =

⋃
n an and

p = limn→∞ P (an). Similarly for uncountably infinite sets.
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7 Conclusion

Since de Finetti’s discovery of non-conglomerable probability functions, non-
conglomerability has been a lively topic of investigation in the philosophical
and statistical literature. In this paper, I have shown that the phenomenon of
non-conglomerability—along with its attendant host of philosophical issues—
naturally extends to comparative confidence. I close with some open technical
questions.

In Sect. 4, I showed that de Finetti’s probability function—which is
finitely additive but not countably additive—can be reformulated as a ratio-
nal comparative confidence relation that is non-conglomerable. However, it
remains to be seen whether, and how, other examples of non-conglomerable
probability functions can be qualitatively reformulated. For example, does
the probability function of Kadane et al. (1986, Sect. 6)—which is countably
additive yet non-conglomerable in some uncountable partition—correspond
to a rational comparative confidence relation that is non-conglomerable?
More generally, can necessary and sufficient conditions be given under which
a rational comparative confidence relation is conglomerable in all partitions?

As I said in Sect. 6.3, a probability function is conglomerable in all count-
able partitions if and only if it is countably additive. That said, the afore-
mentioned example of Kadane et al. (1986) shows that countable additivity
alone is not sufficient to ensure probabilistic conglomerability in all parti-
tions. Thus, to identify necessary and sufficient conditions for qualitative
conglomerability in all partitions, it seems reasonable to seek a constraint
on comparative confidence that (1) is a qualitative analogue of countable
additivity but (2) is a stronger constraint on comparative confidence than
countable additivity is on probability.

As in Sect. 6.3, Monotone Continuity seems to fit the bill yet again.
We saw there that Monotone Continuity is a qualitative analogue of count-
able additivity. Unlike countable additivity, however, Monotone Continu-
ity does not apply only to countably infinite sets of propositions; it holds
with respect to any monotone non-decreasing sequence of propositions. In
this regard, Monotone Continuity is indeed a stronger constraint on com-
parative confidence than countable additivity is on probability. Thus, the
foregoing considerations suggest the following conjecture:

Conjecture. Let � be a comparative confidence relation that
satisfies Koopman’s axioms. Then, � is conglomerable in all par-
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titions if and only if � satisfies Monotone Continuity with re-
spect to all monotone non-decreasing sequences of propositions.63

I leave this conjecture, as well as the previous questions, open for future work.
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Appendix

In this Appendix, I show that the non-conglomerable comparative confi-
dence relation � of Sect. 4 is almost representable by de Finetti’s non-
conglomerable probability function P of Sect. 2. That is, I show:

Almost Representability. If A|B � C|D, then P (A|B) ≥
P (C|D).

Note that the only constraints on � are Koopman’s axioms, Fairness,
and Independence. So, we must show that P satisfies suitable probabilistic
analogues of them. For example, since k|k � a|h by Verified Contingency,
we must show that P (k|k) ≥ P (a|h). Similarly, since Vi|Ω ≈ Vk|Ω by Fair-
ness, we must show that P (Vi|Ω) = P (Vk|Ω)—i.e., that P (Vi) = P (Vk).

I begin with Koopman’s axioms. Because I will not yet appeal to any
properties of P beyond its satisfying constraints (1)–(4) from Sect. 2—I will
not even appeal to the fact that P is real-valued—it will follow that any
conditional probability function satisfying those conditions also satisfies the
relevant probabilistic analogues of Koopman’s axioms. Thus, any conditional
probability function—real-valued or extended-valued—can almost represent
some comparative confidence relation that satisfies Koopman’s axioms.

63This conjecture is further suggested by the result of Seidenfeld et al. (2013), who
generalize the notion of countable additivity to κ-additivity for any infinite cardinality
κ. They show that, if a probability function P fails to be κ-additive for some uncount-
able κ (but satisfies particular structural constraints), then P is non-conglomerable in
a partition of cardinality κ. Hence, insofar as Monotone Continuity with respect to
κ-sized sequences of monotone non-decreasing propositions is a qualitative counterpart of
κ-additivity—another open question in itself—some form of this conjecture is all the more
reasonable.
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1. Verified Contingency. Recall that P [(A ∩ B)|B] = P (A|B) (cf.
footnote 14). So, P (a|h) = P [(a ∩ h)|h] and P (¬a|h) = P [(¬a ∩ h)|h].
By finite additivity and constraint (2), P (a|h) + P (¬a|h) = P [(a ∩
h)|h] +P [(¬a∩ h)|h] = P (h|h) = 1. Since P (¬a|h) ≥ 0, it follows that
P (a|h) ≤ 1. Thus, since P (k|k) = 1, P (k|k) ≥ P (a|h).

2. Implication. Suppose a|h � k|k, so that h ⊆ a. Then a = (h∪h′) for
some h′ ∈ F such that h ∩ h′ = ∅. So, by finite additivity, P (a|h) =
P [(h ∪ h′)|h] = P (h|h) + P (h′|h) = 1 + P (h′|h) ≥ 1 = P (k|k), as
desired.

3. Reflexivity. Obviously, P (a|h) ≥ P (a|h).

4. Transitivity. Suppose that P (c|l) ≥ P (b|k) and P (b|k) ≥ P (a|h).
Obviously, P (c|l) ≥ P (a|h).

5. Antisymmetry. Suppose that P (b|k) ≥ P (a|h). Then, as above,
P (b|k)+P (¬b|k) = P [(b∩k)|k]+P [(¬b∩k)|k] = P (k|k) = 1. Similarly,
P (a|h) + P (¬a|h) = 1. Thus, P (¬a|h) = 1 − P (a|h) ≥ 1 − P (b|k) =
P (¬b|k), as desired.

6. Composition.
Suppose:

(a) (a1 ∩ b1) ∩ h1 6= ∅ and (a2 ∩ b2) ∩ h2 6= ∅.
(b) P (a2|h2) ≥ P (a1|h1).
(c) P [b2|(a2 ∩ h2)] ≥ P [b1|(a1 ∩ h2)].

By constraint (4), P [(a2∩ b2)|h2] = P [b2|(a2∩h2)]P (a2|h2) and P [(a1∩
b1)|h1] = P [b1|(a1∩h1)]P (a1|h1). Thus, by (b) and (c), P [(a2∩b2)|h2] ≥
P [(a1 ∩ b1)|h1].

7. Decomposition.
Suppose:

(a) (a1 ∩ b1) ∩ h1 6= ∅ and (a2 ∩ b2) ∩ h2 6= ∅.
(b) P (a1|h1) ≥ P (a2|h2).
(c) P [(a2 ∩ b2)|h2] ≥ P [(a1 ∩ b1)|h1].
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As above, P [(a2∩b2)|h2] = P [b2|(a2∩h2)]P (a2|h2) and P [(a1∩b1)|h1] =
P [b1|(a1∩h1)]P (a1|h1). Thus, by (b) and (c), it follows that P [b2|(a2∩
h2)] ≥ P [b1|(a1 ∩ h1)].

8. Alternative Presumption. Suppose P (r|s) ≥ P [a|(b∩h)] and P (r|s) ≥
P [a|(¬b ∩ h)]. By constraint (4), P [(a ∩ b)|h] = P [a|(b ∩ h)]P (b|h)
and P [(a ∩ ¬b)|h] = P [a|(¬b ∩ h)]P (¬b|h). So, by finite additivity,
P [(a ∩ b)|h] + P [(a ∩ ¬b)|h] = P (a|h). Using finite additivity again,

P (a|h) = P [a|(b ∩ h)]P (b|h) + P [a|(¬b ∩ h)]P (¬b|h) (32)

= P [a|(b ∩ h)]P (b|h) + P [a|(¬b ∩ h)][1− P (b|h)] (33)

≤ P (r|s)P (b|h) + P (r|s)[1− P (b|h)] (34)

= P (r|s), (35)

as desired.

9. Subdivision.
Suppose the propositions a1, . . . , an, b1, . . . , bn are such that:

(a) ai ∩ aj = bi ∩ bj = ∅ for all i, j = 1, . . . , n such that i 6= j.

(b) a = (a1 ∪ . . . ∪ an) 6= ∅ and b = (b1 ∪ . . . ∪ bn) 6= ∅.
(c) P (an|a) ≥ . . . ≥ P (a1|a) and P (bn) ≥ . . . ≥ P (b1|b).

Since finite additivity entails that P (a1|a)+. . .+P (an|a) = P (a|a) = 1,
it follows from (c) that P (a1|a) ≤ 1

n
. For the same reason, P (b1|b) ≤ 1

n
.

Since P (bn|b) ≥ P (b1|b), it follows that P (bn|b) ≥ 1
n
≥ P (a1|a).

Fairness and Independence place stricter requirements on almost rep-
resentability than Koopman’s axioms in that not every conditional probabil-
ity function satisfies their probabilistic analogues. Nonetheless, it is easy to
see that P does. In particular, by definition of P :

• Probabilistic Fairness. For every i, j ∈ N: P (Vi) = P (Vj) and
P (Hi) = P (Hj).

• Probabilistic Independence. For every i, j ∈ N: P (Hj|Vi) = P (Hj)
and P (Vi|Hj) = P (Vi).

Since P satisfies probabilistic analogues of Koopman’s axioms, Fairness,
and Independence, it follows that � is almost representable by P .
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